On the Robust Estimation of Power Spectra, Coherences, and Transfer Functions
نویسندگان
چکیده
Robust estimation of power spectra, coherences, and transfer functions is investigated in the context of geophysical data processing. The methods described are frequency-domain extensions of current techniques from the statistical iterature and are applicable in cases where section-averaging methods would be used with data that are contaminated by local nonstationarity or isolated outliers. The paper begins with a review of robust estimation theory, emphasizing statistical principles and the maximum likelihood or M-estimators. These are combined with section-averaging spectral techniques to obtain robust estimates of power spectra, coherences, and transfer functions in an automatic, data-adaptive fashion. Because robust methods implicitly identify abnormal data, methods for monitoring the statistical behavior of the estimation process using quantile-quantile plots are also discussed. The results are illustrated using a variety of examples from electromagnetic geophysics.
منابع مشابه
Robust state estimation in power systems using pre-filtering measurement data
State estimation is the foundation of any control and decision making in power networks. The first requirement for a secure network is a precise and safe state estimator in order to make decisions based on accurate knowledge of the network status. This paper introduces a new estimator which is able to detect bad data with few calculations without need for repetitions and estimation residual cal...
متن کاملRobust Estimation in Linear Regression Model: the Density Power Divergence Approach
The minimum density power divergence method provides a robust estimate in the face of a situation where the dataset includes a number of outlier data. In this study, we introduce and use a robust minimum density power divergence estimator to estimate the parameters of the linear regression model and then with some numerical examples of linear regression model, we show the robustness of this est...
متن کاملSimultaneous robust estimation of multi-response surfaces in the presence of outliers
A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...
متن کاملTesting the Exactitude of Estimation Methods in the Presence of Outliers: An accounting for Robust Kriging
Estimation of gold reserves and resources has been of interest to mining engineers and geologists for ages. The existence of outlier values shows the economic part of the deposits subject to the fact that don’t depend on the human or technical errors. The presence of these high values causes a pseudo dramatically increment in variance estimation of economical blocks when applying conventional m...
متن کاملImprove Estimation and Operation of Optimal Power Flow(OPF) Using Bayesian Neural Network
The future of development and design is impossible without study of Power Flow(PF), exigency the system outcomes load growth, necessity add generators, transformers and power lines in power system. The urgency for Optimal Power Flow (OPF) studies, in addition to the items listed for the PF and in order to achieve the objective functions. In this paper has been used cost of generator fuel, acti...
متن کامل